
20.9.2017 Kernel building - Raspberry Pi Documentation

https://www.raspberrypi.org/documentation/linux/kernel/building.md 1/5

DOCUMENTATION > LINUX > KERNEL > BUILDING

KERNEL BUILDING

There are two main methods for building the kernel. You can build locally
on a Raspberry Pi, which will take a long time; or you can cross-compile,
which is much quicker, but requires more setup.

LOCAL BUILDING

On a Raspberry Pi, first install the latest version of Raspbian. Then boot
your Pi, plug in Ethernet to give you access to the sources, and log in.

First install Git and the build dependencies:

sudo apt-get install git bc

Next get the sources, which will take some time:

git clone --depth=1 https://github.com/raspberrypi/linux

Configure the kernel; as well as the default configuration, you may wish
to configure your kernel in more detail or apply patches from another
source, to add or remove required functionality:

Run the following commands, depending on your Raspberry Pi version.

RASPBERRY PI 1, PI 0, PI 0W, AND COMPUTE MODULE DEFAULT
BUILD CONFIGURATION

cd linux 

KERNEL=kernel 

make bcmrpi_defconfig

RASPBERRY PI 2, PI 3, AND COMPUTE MODULE 3 DEFAULT
BUILD CONFIGURATION

cd linux 

KERNEL=kernel7 

make bcm2709_defconfig

https://www.raspberrypi.org/documentation
https://www.raspberrypi.org/documentation/linux
https://www.raspberrypi.org/documentation/linux/kernel
https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/documentation/linux/kernel/configuring.md
https://www.raspberrypi.org/documentation/linux/kernel/patching.md


20.9.2017 Kernel building - Raspberry Pi Documentation

https://www.raspberrypi.org/documentation/linux/kernel/building.md 2/5

Build and install the kernel, modules, and Device Tree blobs; this step takes
a long time:

make -j4 zImage modules dtbs 

sudo make modules_install 

sudo cp arch/arm/boot/dts/*.dtb /boot/ 

sudo cp arch/arm/boot/dts/overlays/*.dtb* /boot/overlays/ 

sudo cp arch/arm/boot/dts/overlays/README /boot/overlays/ 

sudo cp arch/arm/boot/zImage /boot/$KERNEL.img

Note: On a Raspberry Pi 2/3, the  -j4  flag splits the work between all
four cores, speeding up compilation significantly.

CROSS-COMPILING

First, you will need a suitable Linux cross-compilation host. We tend to use
Ubuntu; since Raspbian is also a Debian distribution, it means many
aspects are similar, such as the command lines.

You can either do this using VirtualBox (or VMWare) on Windows, or install
it directly onto your computer. For reference, you can follow instructions
online at Wikihow.

INSTALL TOOLCHAIN

Use the following command to download the toolchain to the home folder:

git clone https://github.com/raspberrypi/tools ~/

Updating the $PATH environment variable makes the system aware of file
locations needed for cross-compilation. On a 32-bit host system you can
update and reload it using:

echo PATH=\$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-linux-

gnueabihf-raspbian/bin >> ~/.bashrc 

source ~/.bashrc

If you are on a 64-bit host system, you should use:

echo PATH=\$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-linux-

gnueabihf-raspbian-x64/bin >> ~/.bashrc 

source ~/.bashrc

GET SOURCES

http://www.wikihow.com/Install-Ubuntu-on-VirtualBox


20.9.2017 Kernel building - Raspberry Pi Documentation

https://www.raspberrypi.org/documentation/linux/kernel/building.md 3/5

To get the sources, refer to the original GitHub repository for the various
branches.

$ git clone --depth=1 https://github.com/raspberrypi/linux

BUILD SOURCES

To build the sources for cross-compilation, there may be extra
dependencies beyond those you've installed by default with Ubuntu. If you
find you need other things, please submit a pull request to change the
documentation.

Enter the following commands to build the sources and Device Tree files:

For Pi 1, Pi 0, Pi 0 W, or Compute Module:

cd linux 

KERNEL=kernel 

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- bcmrpi_defconfig

For Pi 2, Pi 3, or Compute Module 3:

cd linux 

KERNEL=kernel7 

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- bcm2709_defconfig

Then, for both:

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- zImage modules 

dtbs

Note: To speed up compilation on multiprocessor systems, and get some
improvement on single processor ones, use  -j n , where n is the
number of processors * 1.5. Alternatively, feel free to experiment and see
what works!

INSTALL DIRECTLY ONTO THE SD CARD

Having built the kernel, you need to copy it onto your Raspberry Pi and
install the modules; this is best done directly using an SD card reader.

First, use  lsblk  before and after plugging in your SD card to identify it.
You should end up with something like this:

sdb 

   sdb1 

   sdb2

with   being the FAT (boot) partition, and   being the ext4

https://github.com/raspberrypi/linux


20.9.2017 Kernel building - Raspberry Pi Documentation

https://www.raspberrypi.org/documentation/linux/kernel/building.md 4/5

with  sdb1  being the FAT (boot) partition, and  sdb2  being the ext4
filesystem (root) partition.

If it's a NOOBS card, you should see something like this:

sdb 

  sdb1 

  sdb2 

  sdb5 

  sdb6 

  sdb7

with  sdb6  being the FAT (boot) partition, and  sdb7  being the ext4
filesystem (root) partition.

Mount these first, adjusting the partition numbers for NOOBS cards:

mkdir mnt/fat32 

mkdir mnt/ext4 

sudo mount /dev/sdb1 mnt/fat32 

sudo mount /dev/sdb2 mnt/ext4

Next, install the modules:

sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- 

INSTALL_MOD_PATH=mnt/ext4 modules_install

Finally, copy the kernel and Device Tree blobs onto the SD card, making
sure to back up your old kernel:

sudo cp mnt/fat32/$KERNEL.img mnt/fat32/$KERNEL-backup.img 

sudo cp arch/arm/boot/zImage mnt/fat32/$KERNEL.img 

sudo cp arch/arm/boot/dts/*.dtb mnt/fat32/ 

sudo cp arch/arm/boot/dts/overlays/*.dtb* mnt/fat32/overlays/ 

sudo cp arch/arm/boot/dts/overlays/README mnt/fat32/overlays/ 

sudo umount mnt/fat32 

sudo umount mnt/ext4

Another option is to copy the kernel into the same place, but with a
different filename - for instance, kernel-myconfig.img - rather than
overwriting the kernel.img file. You can then edit the config.txt file to select
the kernel that the Pi will boot into:

kernel=kernel-myconfig.img

This has the advantage of keeping your kernel separate from the kernel
image managed by the system and any automatic update tools, and



20.9.2017 Kernel building - Raspberry Pi Documentation

https://www.raspberrypi.org/documentation/linux/kernel/building.md 5/5

allowing you to easily revert to a stock kernel in the event that your kernel
cannot boot.

Finally, plug the card into the Pi and boot it!


