Windischgarsten 2017

Raspberry Pi, Mobile Networking & More

Prof. Dipl.-Ing. Klaus Knopper <knoppix@knopper.net>

Windischgarsten 2017

Netzwerk Schulungsraum

Wireless LAN SSID: **pi2** (für RasPis, NICHT pi)

Wireless LAN Passwort (PSK): sperlhof

 Netzwerk LAN+WLAN:
 10.0.0.X (per DHCP)

 Netzmaske:
 255.255.255.0

 Router:
 10.0.0.1

 DNS:
 10.0.0.1

Referent:

10.0.0.10

Organisatorisches

- Beginn Do 9:30 12:00, nachmittags Exkursion "fliegender embedded Linux-Computer mit First-Person-View (FPV)", Fr+Sa 9:00, Ende Freitag 13:00 Uhr (nachmittags "freie Projekte")
- Mittagspause und Abendessen nach Bedarf, vor dem Abendessen noch 2+ Stunden "freie Projekte"
- Sowohl "Anwendung" als auch "Systemprogrammierung" (teilweise parallel möglich, s. Übungen)
- Offenes Programm mit hohem praktischen Anteil, Teilnehmerwünsche:

Teilnehmerwünsche

- Raspberry Pi Zero W in Betrieb nehmen, vorher GPIOs wg. serieller Schnittstelle einlöten.
- Kernel mit Cross-Compiler selbst compilieren, alternativ: RT-Kernel installieren
- ► Yocto mal wieder probieren? (ca. 40GB freier Plattenplatz erforderlich)
- ► Arduino?
- ► 3D-Druck-Projekte rund um Raspberry Pi
- ▶ ...

Raspberry Pi Modell B

→BCM2835 SoC →512 MB RAM →ARM11 (armv6) Prozessor →VideoCore-IV-GPU →2x USB-2.0 →HDMI-Ausgang (Video + Audio) →Composite-Video Audio-Ausgang (3,5mm Klinke) →D-/MMC-Karten-Slot →Ethernet-Port (10/100 MBit) →21 GPIO-Pins (z.B. UART. SPI und I2C) →DSI (Display Serial Interface) über 15poligen Flat Flex Connector →Kamera-Interface, CSI (Camera Serial Interface) über 15-poligen Flat Flex Connector →Altern. Stromversorgung per µ-USB

Quelle: netzmafia.de

Unterschiede Modell B und B+

+ zusätzliche Pins an der GPIO-Steckerleiste (I²C Bus)
| Audio und Composite-Video in einem Stecker
+ 2 zusätzliche USB 2.0 Ports
| Geringerer Stromverbrauch
+ stabiler beim Umstecken
| μ-SD Kartenslot
| Qualität der PWN Audio-Ausgabe durch geänderten
Stromlaufplan besser

Quelle: netzmafia.de

Raspberry Pi 2

+ Vier Cortex-A7-Kerne, die mit 900 MHz getaktet + neues SoC BCM2836 (2835+1) + RAM 1GB

Sonst wie Raspi B+ inkl. Anschlussbelegung.

Quelle: netzmafia.de

Raspberry Pi 3

+ SoC BCM2837 von Broadcom
+ ARM Cortex-A53 Prozessor, 64-Bit-Quadcore mit 1,2 GHz ("doppelt so schnell wie der Raspberry Pi 2")
+ WLAN BCM43438 integriert (802.11b/g/n)+ unterstützt Bluetooth 4.1 (Classic und Low Energy).
* Kompatibilitäts-Problem: PL011-UART jetzt für Bluetooth zuständig, um serielle Konsole per festem Takt wieder nutzbar zu machen, Bootoption enable_uart=1 notwendig.

Sonst wie Raspi 2 inkl. Anschlussbelegung.

Raspberry Pi Zero W

CPU: BCM2835 - ARM1176|Z-F v6 32Bit Single Core mit mathematischem Koprozessor (VPU) und DSP, 1 GHz GPU: Videocore IV, Dual Core, 128 KB L2-Cache, 250 MHz mit Unterstützung von OpenGL ES 2.0 und OpenVG 1.1 512 MB SDRAM @ 400 MHz RAM: Maße: 65 mm x 30 mm x 5 mm Anschlüsse: 1x USB 2.0, Micro-HDMI, Composite Video (unbestückt), microSD-Karte GPIO-Pins: 40 (unbestückt) WLAN+BT: Cypress CYW43438 Wireless-Chipfür 802.11b/g/n-WLAN sowie Bluetooth 4.0

Betriebssysteme (Images)

- http://www.raspberrypi.org/downloads/
- Auswahl beliebter SD-Karten-Images im "RasPi-Images"-Ordner auf dem USB-Stick (1. Partition FAT32), zusammen mit Knoppix 8.1 + Arduino-IDE.

Installation / Konfiguration

Grundsätzlich:

- Image auf SD-Karte entpacken (z.B. dd if=raspbian.img of=/dev/sdb, mehrere Partitionen werden dabei angelegt)
- Booten (dabei auto-Resizing auf physikalische Größe mit Neustart), nachher Konfiguration per (Text-) GUI raspiconfig
- Neue Pakete installieren (Plugins bei XBMC oder Pakete bei Raspbian)

Bootoptionen Raspian

- Die Bootdateien liegen bei Raspian auf der ersten Partition (Kernel, Initialsystem)
- ► Konfigurationsdatei: config.txt
- Autostart von SSH: Leere Datei "ssh" auf 1. Partition anlegen!
- enable_uart=1 f
 ür Rasberry Pi 3

Zugang zum Raspberry Pi

- "Traditionell": Monitor (HDMI, Composite, Adapter), USB-Keyboard+Maus
- ► Zeitgemäß:
 - ► Login per SSH verschlüsselt via LAN oder WLAN
 - Login per Remote-Desktop (VNC, rdesktop) Problem: Noch keine IP-Adresse konfiguriert oder bekannt!
- Professionell (Embedded Programmierung): Serielle Konsole über GPIO / (D)UART (direktes "Andocken" ans System)

Serielle Konsole (Hardware)

► USB → GPIO/UART-Kabel (Pinbelegung beachten!)

GROUND = Schwarz = Pin 6 TxD = Weiß = Pin 8 RxD = Grün = Pin 10

5V = Rot = Pin 2 *kann* zur Kopplung der Stromversorgung angeschlossen werden, sollte muss aber weggelassen werden falls schon anderweitig Power!

Serielle Konsole (Software)

Unter Raspbian ist die serielle Konsole standardmäßig per /etc/inittab-Eintrag aktiv:

#Spawn a getty on Raspberry Pi serial line T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100
► Auf der anderen Seite des Kabels muss ein Terminalprogramm gestartet werden, z.B. minicom, screen oder putty
Einstellung: Device /dev/ttyUSB0 Speed 115200

screen /dev/ttyUSB0 115200

Einloggen mit Login: pi Passwort: raspberry

Netzwerk-Einstellungen in der Konsole

Am einfachsten: Editieren von /etc/network/interfaces

sudo nano /etc/network/interfaces

```
auto wlan0
iface wlan0 inet dhcp
wpa-proto WPA2 WPA
wpa-key-mgmt WPA-PSK
wpa-ssid pi2
wpa-psk sperlhof
```

Nach dem Speichern: sudo ifdown --force wlan0 sudo ifup wlan0

Netzwerk-Konfiguration

Während sich /etc/network/interfaces um die Konnektierung kümmert, wird der Nameserver in /etc/resolv.conf eingetragen:

```
nameserver 10.0.0.1
```

- ▶ ifconfig device [ip-adresse] [netmask netzmaske]
- ▶ route [-n] …
- Sobald das Netz erreichbar ist, kann mit der Installation neuer Pakete begonnen werden, z.B. vnc oder rdp Server für graphischen Remote-Zugriff.

Software-Auswahl und Konfiguration anpassen

- Raspbian: Menügeführte Konfiguration mit sudo raspi-config (s. Übung 1)
- Softwarepakete aus Debian/Raspian-Repository

Kommando	Wirkung
apt update	SW-Datenbank aktualisieren
apt upgrade	(VORSICHT!) Komplettes System aktualisieren
apt search Stichwort	Software suchen
apt show paketname	Details anzeigen
apt install paketname	Softwarepaket installieren oder aktualisieren

Apt Proxy

Durch Setzen einer Umgebungsvariablen export http_proxy=http://10.0.0.100:9999 bzw.

export ftp_proxy=http://10.0.0.100:9999

kann apt-get in der aktuellen Shell angewiesen werden, den Cache auf dem Referenten-Rechner zu verwenden (das sollte die Downloads beschleunigen!).

Kommandozeile vs. Graphische Oberfläche

- ssh raspi-ip-adresse startet zunächst nach erfolgreichem Login eine Shell für den Benutzer "pi".
- SSH unter Linux erlaubt auch den Direktstart graphischer Programme, die auf die eigene Desktop-Oberfläche "getunnelt" werden.
- Desktop-Projektion bzw. Starten eines virtuellen Desktop per tightvncserver ist möglich (VNC). Für RDP-Clients kann entsprechend ein RDP-Server installiert werden: sudo apt-get install xrdp

Workshops

...zu den Wunschthemen:

- ► Handouts
- ► Übungen
- ► Beispiele (Skripte, Webseiten)

Materialien werden nach dem Kurs im Web zur Verfügung gestellt.

http://knopper.net/Windischgarsten/

Viel Spaß beim "Basteln"!

Windischgarsten 2017